
Software Best Practices for Physicists
Lessons learned in a year as a professional software engineer

Laura Kogler

Pivotal Labs

7 March 2014

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Physics work

Undergrad: University of Washington
Atomic physics in the Fortson lab
Learned C for DAQ software

Grad school: UC Berkeley / LBL
CUORE / Cuoricino
C++ analysis framework

Postdoc: Sandia
Radiation detection for nonproliferation group
Worked on C++ data acquisition framework
C++ analysis software for neutrino experiments

Pivotal Labs

Software consulting company

Mostly web and mobile (Ruby, javascript, objective C)

Projects I’ve worked on include:
tool for data scientists
in-browser CAD software
iPhone app for stadiums

Practice and teach agile development methods

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Embrace Change

The core principle of agile development is that requirements for software
inevitably change, and instead of trying to predict and plan for every
possible requirement up front, we should create systems that are resilient
to change.

Change is a fact of life. In my experience this is just as true in physics
as it is in industry.

Example reasons software requirements may change

New discovery changes experiment focus or needs

Budget considerations reduce scope

Colleague asks to repurpose code for their application

Extreme Programming

Extreme Programming (XP) is a style of Agile Development invented by
Kent Beck in the late 90s. The name comes from the idea that we should
take commonly accepted “good” software practices and apply them to
the extreme.

Code reviews =⇒ continuous code review (pair programming)

Testing =⇒ test-driven development

Simplicity =⇒ simplest thing that could possibly work

Good design and architecture =⇒ continuous refactoring

Integration testing =⇒ continuous integration

Extreme Programming Explained: Embrace Change, 2nd ed, Kent Beck
(2004)

Feedback loops

One of the key concepts of Agile
Development is feedback, applied
at every step of the development
process.

Shortening feedback loops is a way
to increase agility and respond more
quickly to change.

Planning/Feedback Loops
Release Plan

Code

Iteration Plan

Acceptance Test

Stand Up Meeting

Pair Negotiation

Unit Test

Pair Programming

Months

Weeks

Days

One day

Hours

Minutes

Seconds

Figure by Don Wells

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Why pair program?

Continuous code review – improve code quality, reduce
bugs

Improve focus, use time more effectively

Spread knowledge among team members – eliminate
knowledge silos

Ramp up new team members easily

Maintain team alignment on goals, priorities, and practices

It’s fun!

But doesn’t pair programming slow you down?

A common misconception is that pair programming is half as productive
as individuals programming alone. In my experience this is far from true.
Here’s why:

Save time on debugging

Get stuck less often

Get distracted less often

Spend less time trying to decipher other people’s cryptic code

Combined with the other benefits of pair programming listed above,
pairing turns out to be a great value overall.

How to pair program effectively

One computer, two keyboards
(and monitors and mice)

Check out
http://screenhero.com/ for
easy to set up collaborative
screen sharing (sadly no linux
support yet)

Work on listening, as well as
talking. Take turns!

Pairing works best with
co-located teams. If that’s not
possible, consider remote
pairing or modularizing code
base and splitting work by
location.

http://screenhero.com/

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Daily and weekly cycles

The process we teach at Pivotal includes three types of meetings:

Daily standup A brief checkin to discuss previous day’s
events and determine pairing for current day

Iteration planning meeting Discuss the team’s upcoming work for the
week

Team retrospective Review the events of the past week. Identify
action items to make improvements in coming
week.

In a scientific environment, where team members are not spending 100%
of their time coding, this set of meetings may not be appropriate. Tailor
to suit your needs. Retrospectives are helpful in guiding process changes
and finding the right balance for your team.

Identifying features

One key way in which scientific programming is different from industry is
there is typically no separation between the roles of requesting software
features, implementing them, and using them. The product manager,
developer, and end user are often the same person!

Nevertheless, it can be helpful to separate these roles conceptually, even
if they are performed by the same person. Consider formalizing your
feature request process. Use an issue tracker to record and prioritize
features and bugs, and track your progress toward concrete milestones.

Popular issue tracking software

Pivotal Tracker http://www.pivotaltracker.com/why-tracker

Jira https://www.atlassian.com/software/jira

Bugzilla http://www.bugzilla.org/

Trac http://trac.edgewall.org/

http://www.pivotaltracker.com/why-tracker
https://www.atlassian.com/software/jira
http://www.bugzilla.org/
http://trac.edgewall.org/

Writing good “user stories”

In agile development, features are
generally described in terms of user
stories: incremental units of
functionality that provide value to
an end user.
A good user story should meet the
following criteria:

has a clear persona (who is the
feature for?)

unambiguously describes the
desired behavior and has clear
acceptance criteria

represents the smallest unit of
independently deliverable work
that provides value

Example user stories

As a shifter, I want to see the
current temperature of the
cryostat on the experiment
control panel.

As a shifter, I want to see the
current temperature of the
cryostat in red when it deviates
by more than 3 sigma from the
one week running average
temperature.

As an analyst, I want to see a
plot of the detector resolution
vs the temperature of the
cryostat.

Why bother writing user stories?

It’s true that one of the primary benefits of writing good user stories is to
improve communciation within your team about software requirements.
But even if you’re the only person defining, implementing, and using
features, it can still be beneficial to formally write and track user stories.

Forces you to think through the desired behavior of the system
before you start coding

Gives you data-driven tools for velocity estimation

Allows intentional and informed prioritization of tasks

Provides an additional source of documentation of intended code
behavior (tip: make a habit of referencing your issue tracker in your
source control commit messages for cross-referencing later. Some
issue trackers even provide source control integration features.)

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Automated software testing

Testing is great! Here are some reasons why you should write automated
tests for your code:

Confidence that your code does what you think it does

Prevent regresssions

Encourage good design – classes that can be easily tested are by
nature modular and reusable.

Enable refactoring

Living documentation that tells you when it goes out of date

Types of tests

Unit tests

Test functions and objects in
isolation

Run fast

Should cover all code paths

Generally should not touch the
filesystem, database, or network

Especially useful for
encouraging good design

Integration tests

Test integration between
different components of the
system

May be slow

Usually only cover a few
representative code paths

Especially useful for catching
regressions

Ideally, you will have both types of tests in your code base, and you will
have 100% test coverage...

Legacy code

...But unfortunately, we don’t live in an ideal world.

What if you have lots of existing code that doesn’t have any tests
yet?

Check out Working Effectively with Legacy Code, by Michael Feathers,
which contains tons of valuable techniques for introducing tests into a
code base that doesn’t already have them.

“Legacy code is simply code without tests”

Test driven development

The idea of test driven development is to write your tests before you
write your implementation. It’s important to see the test fail first, so that
you know your changes made a difference. You can think of it like an
experimental control.

An algorithm for test driven development

1 Write a failing test case

2 Make it compile

3 Make it pass

4 Remove duplication (refactor)

5 Repeat
From Working Effectively with Legacy Code, Michael Feathers

I often find it useful to start with a high level integration test for the
feature I am implementing and then work down into unit tests.

But won’t writing tests slow me down?

This is a common objection to writing automated tests for code. It’s true
that writing test requires a substantial investment of up front effort. In a
fully tested code base, there may be 2–3 times as much test code as
production code.

However, once you get over the initial hurdle, the investment of time and
effort pays itself back many times over. You’ll be surprised how fast you
start to see improvements in reliability and maintainability, and how
much time you save debugging and tracking down problems.

A real live example

Imagine we want to make a class called MeasuredQuantity that can
hold a value and an error, for use in building up more complicated
calculations. Let’s start by writing some tests, using a lightweight test
framework called “Catch”:

MeasuredQuantityTest.cpp

#define CATCH_CONFIG_MAIN

#include "catch.hpp"

#include "MeasuredQuantity.h"

TEST_CASE("Fractional Error", "fractional error") {

MeasuredQuantity a = MeasuredQuantity(4, .1);

REQUIRE(a.FractionalError() == Approx(0.025));

}

Make it pass

MeasuredQuantity.cpp

MeasuredQuantity::MeasuredQuantity(double value, double error)

: fValue(value)

, fError(error)

{}

double MeasuredQuantity::FractionalError() const

{

double result = fError/fValue;

return result;

}

Add more tests

MeasuredQuantityTest.cpp

TEST_CASE("If the value is zero", "[MeasuredQuantity]") {

MeasuredQuantity a = MeasuredQuantity(0, .1);

REQUIRE_THROWS_AS(a.FractionalError(), DivideByZero);

}

MeasuredQuantity.cpp

double MeasuredQuantity::FractionalError() const

if(fValue==0) throw DivideByZero();

double result = fError/fValue;

return result;

...and more tests

MeasuredQuantityTest.cpp

SCENARIO("Adding measured quantities", "[MeasuredQuantity]") {

GIVEN("Two measured quantities") {

MeasuredQuantity a = MeasuredQuantity(5, .3);

MeasuredQuantity b = MeasuredQuantity(2, .4);

WHEN("the numbers are added") {

MeasuredQuantity c = a + b;

THEN("the resulting value and error are correct") {

REQUIRE(c.Value() == Approx(7));

REQUIRE(c.Error() == Approx(0.5));

}

}

}

}

Implementing addition

MeasuredQuantity.cpp

MeasuredQuantity MeasuredQuantity::operator+(

const MeasuredQuantity& right) const

{

MeasuredQuantity result;

result.SetValue(fValue + right.Value());

result.SetError(sqrt(fError*fError

+ right.Error()*right.Error()));

return result;

}

Test for subtraction

MeasuredQuantityTest.cpp

WHEN("the numbers are added") {

MeasuredQuantity c = a + b;

THEN("the resulting value and error are correct") {

REQUIRE(c.Value() == Approx(7));

REQUIRE(c.Error() == Approx(0.5));

}

}

WHEN("the numbers are subtracted") {

MeasuredQuantity c = a - b;

THEN("the resulting value and error are correct") {

REQUIRE(c.Value() == Approx(3));

REQUIRE(c.Error() == Approx(0.5));

}

}

Implementing subtraction

MeasuredQuantity.cpp

MeasuredQuantity MeasuredQuantity::operator+(
const MeasuredQuantity& right) const

{
MeasuredQuantity result;
result.SetValue(fValue + right.Value());
result.SetError(sqrt(fError*fError + right.Error()*right.Error()));
return result;

}
MeasuredQuantity MeasuredQuantity::operator-(

const MeasuredQuantity& right) const
{

MeasuredQuantity result;
result.SetValue(fValue - right.Value());
result.SetError(sqrt(fError*fError + right.Error()*right.Error()));
return result;

}

Refactoring

Refactoring means changing the structure of the code without changing
its behavior, in order to improve the underlying design and
maintainability of the code.

Tests are extremely valuable for refactoring, because they provide a way
to ensure that the behavior of the code is held constant when changes
are made. In codebases without tests, refactoring is often avoided out of
fear of breaking something, leading to increasingly unmaintainable code
over time.

Refactor (remove duplication)

MeasuredQuantity.cpp

MeasuredQuantity MeasuredQuantity::operator+(
const MeasuredQuantity& right) const

{
MeasuredQuantity result;
result.SetValue(fValue + right.Value());
result.SetError(additiveError(fError, right.Error()));
return result;

}
MeasuredQuantity MeasuredQuantity::operator-(

const MeasuredQuantity& right) const
{

MeasuredQuantity result;
result.SetValue(fValue - right.Value());
result.SetError(additiveError(fError, right.Error()));
return result;

}
double MeasuredQuantity::additiveError(double e1, double e2) const {

return sqrt(e1*e1 + e2*e2);
}

C++ testing frameworks

There are a lot of unit testing libraries for C++; here are a few that seem
to be popular:

Popular C++ testing frameworks

Catch https://github.com/philsquared/Catch

googletest https://code.google.com/p/googletest/

Boost test http://www.boost.org/doc/libs/1_55_0/libs/test/

doc/html/index.html

CppUnit http://sourceforge.net/projects/cppunit/

For even more options, see: http://en.wikipedia.org/wiki/List_

of_unit_testing_frameworks#C.2B.2B

https://github.com/philsquared/Catch
https://code.google.com/p/googletest/
http://www.boost.org/doc/libs/1_55_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_55_0/libs/test/doc/html/index.html
http://sourceforge.net/projects/cppunit/
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B

Continuous Integration

Now that you have some great unit tests, you’ll want a way to run them
automatically! Continuous Integration (CI) is a system to automatically
build and test your software whenever changes are submitted by
developers.

Continuous integration resources

Jenkins http://jenkins-ci.org/

Travis http://docs.travis-ci.com/

http://jenkins-ci.org/
http://docs.travis-ci.com/

Outline

1 My background

2 Agile Development Overview

3 Pair Programming

4 Iteration Planning

5 Test Driven Development

6 Conclusion

Agile Physics?

I’m very interested in how the methods of Agile Development
work and don’t work in a scientific environment. Here are a
few of the issues I’ve been thinking about:

Pairing for general lab work, not just programming

Exploratory programming

Incentive structure and culture of academia regarding
team vs. individual accomplishment

Take home message

1 Test your code

2 Collaborate! Try pair programming.

3 Use incremental, iterative planning and design

4 No really, test your code!

Recommended Reading

“Best Practices for Scientific Computing”, Wilson G, et al. (2014)
PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

Extreme Programming Explained: Embrace Change, 2nd ed, Kent
Beck (2004)

Working Effectively with Legacy Code, Michael Feathers (2004)

Contact

Please send comments, questions, and complaints to:
lkogler@gmail.com

I’d love to hear your feedback and experiences!

Thank you!

	My background
	Agile Development Overview
	Pair Programming
	Iteration Planning
	Test Driven Development
	Conclusion

